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ABSTRACT 

In models in which technic&r induces electroweak symmetry breaking, 
the relations between electroweak parameters will differ from those of the 
standard model. Even with the most conservative assumption that the only 
custodial SU(2) violating parameters are those in the standard model, there 
can be measurable corrections to standard model predictions. We present 
an effective field theory useful for calculating corrections to electroweak pa- 
rameters. We then focus on technicolor models, for which we construct the 
low energy effective theory and calculate the correction to the W mass from 
light resonances, focusing on the potentially large pseudogoldstone boson 
contribution. 
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1 Introduction 

The fact of SU( 2)w x U( 1) electroweak symmetry breaking is indisputable, 
but the dynamical model responsible for breaking the symmetry is rather 
poorly constrained by current data. Until experiments achieve the neces- 
sary energy and luminosity to directly study the particles involved in the 
symmetry breaking, we must rely on precision measurements at accessible 
energy scales to provide clues of the physics at higher energy. In particular, 
with precision measurements of the IV and 2 masses, radiative corrections 
to the standard model parameters will be strongly constrained. With a mea- 
surement of the top quark mass, nonstandard model contributions should be 
distinguishable from those of the standard model, putting constraints on the 
possible models for electroweak symmetry breaking. 

Technicolor theories[l,2] arc an intriguing mechanism for symmetry break- 
ing. In these models, there is no fundamental scalar like the Higgs field 
which gets a vacuum expectation value; instead, the symmetry is broken by 
the formation of a condensate of technifermions, in analogy to the breaking 
of c&al symmetry in &CD. Also like QCD, there will be bound states of 
technifermions, the analogues of the mesons and baryons. Unfortunately, al- 
though the basic technicolor idea is quite simple, and can successfully explain 
SU(2)w x U(1) symmetry breaking, it is very difficult to incorporate quark 
masses and mixing angles while simultaneously meeting the constraints im- 
posed by the required suppression of flavor changing neutral currents. While 
there arc as yet no completeiy realistic models, most models invoive large 
number of technifermions, and consequently, many low energy resonances. 

In technicolor models, corrections to electroweak parameters will arise 
from both physics at high and low energy. High energy contributions due to 
the existence of custodial SU(2) violating four fermion operators are model 
dependent, and have been considered elsewhere for certain classes of theo- 
ries [3]. Moreover, it is difficult to reliably calculate such corrections in a 
strongly interacting theory. The second source of electroweak corrections 
will arise at low energy, due to the many light resonances of some technicolor 
theories. The largest contribution probably arises from the pseudogoldstone 
boson contribution, which is enhanced by the factor log(A$/m’), where :1X 
a technicolor scale defined below and m is the pseudogoldstone boson mass. 
Unlike effects calculated from the technifermions or the remaining technicolor 
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scale resonances, the logarithmically enhanced contribution can be reliably 
calculated for a particular model. Because both the spectrum of pseudo- 
goldstone bosom and their gauge couplings are determined, the logarithmi- 
cally enhanced pseudogoidstone boson contribution can be calculated, the 
only uncertainty being a logarithmic dependence on the unknown pseudo- 
goldstone boson mass and technicolor scale. Strong interaction uncertainties 
from technifermions and heavier technicolor scale resonances are absorbed 
in counterterms of the low energy theory. If chiral perturbation theory is 
reliable, and if log(Ai/m’) is large, their contribution will be smaller. 

Previous authors have considered technipion contributions to the 2 mass 
and p [4] and presented numerical results for the correction to the )I/ mass 
[5] for specific models. !Ve will derive a result using effective field theory 
techniques which can be readily applied to various models. We show how 
to derive one loop corrections to standard model parameters by determining 
running parameters at the 2 scale in terms of which physical quantities can 
be calculated. We also interpret our result in this framework. 

In this paper, we will calculate the corrections to the W mass from low 
energy resonances in technicolor models. In section 2, we review electroweak 
theory results, which we interpret in an effective field theory formalism. We 
distinguish the dominant contributions to the parameter AT. In section 3, 
we present the Lagrangian describing the technicolor theory at energies low 
compared to the scale of fermion condensation. In section 4, we calculate 
technipion loop radiative corrections. In section 5, we consider possible cor- 
rections from vector meson or fermionic resonances. We conclude with a 
discussion of the numerical significance of our resuits for a particular model. 

2 Effective Field Theory Interpretation of 

Electroweak Parameters 

In the standard model at tree level the IV and 2 satisfy a mass relation Af,z, 1 - !% c ) AI; =$: (2.1) 

where GF is the Fermi decay constant of the muon and a is the electromag- 
netic coupling strength, l/137. If one substitutes the physical masses of the 
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IV and 2, this relationship is observed to hold approximately, despite the 
fact that it does not automatically follow from the gauge symmetry. Indeed, 
it is easy to construct Higgs sectors in which it does not hold. In the standard 
model it can be deduced from the existence of a “custodial symmetry” [6] - 
an SU(2)c under which Wi, the three gauge bosons of the SU(2)w, transform 
as a triplet. Terms in the Lagrangian which respect this symmetry, such as 
the Higgs potential of the one-doublet model, will not generate corrections. 

At one loop the mass relation reads[7] 

=g,.. ’ (2.2) 

where AT includes radiative effects from various sources, each of which vio- 
lates the custodial symmetry. 

For the purposes of this paper, we consider only corrections of the so- 
called “oblique” type, ie. to the IV, 2, or -y propagators, but not their 
vertices with fermions [S]. We define the correction to the two-point function 
of a gauge boson G to be iCGG(p2)g~u+i~GG(pa)p~pY. The oblique correction 
to Ar is then [7] 

AT = 
Cww(M$.) - Cww(0) 

4% 

-IF(O) + $ Czz( M;) Cww(M&) 
M; - M& (2.3) 

w 
where P’(P) = C”(kZ)/kZ. El ec romagnetic gauge invariance requires that t 
the photon propagator be massless and transverse, so IV(O) is well defined. 
Here we have defined 3: by 

(2.4) 

and ci = 1 - 8:. 
There are several sources of custodial SU(2) violating effects which could 

enter the above formula. In the standard model, the largest effect arises from 
the large mass splitting of the third generation quarks. Thus one finds the 
well-known correction to the 1V mass from a heavy top quark[9] 

(Ar)top 5 -ggg 
u :I, 
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Custodial SU(2) is also broken by the hypercharge gauge coupling. The 
custodial symmetry transforms the three left SU(2)w gauge bosons Wi among 
themselves, and thus the mixing of the FVs with the U(1) boson B breaks 
the custodial symmetry. This custodial violating effect appears explicitly in 
two loop radiative corrections in which a photon or 2 is exchanged. A more 
subtle point is that it is present also in the one-loop radiative corrections. 
Although it has no effect on the low energy p parameter, an ultra-heavy 
degenerate quark doublet will cause a small shift in MwIlO]: 

(Ar)q = ;$ + O(M:,/M;) 
w 

The heavy quark doublet does not decouple as one ordinarily expects [ll], 
rather it serves as a mechanism for feeding the U( 1) breaking of the custo- 
dial symmetry to the 11 mass. This point is made explicit by dividing the 
previous two equations: 

(Ar)top = 3j;op 
(AT)~ -g’l ’ 

where ftop is the Yukawa coupling of the top quark, which is the term which 
violates the custodial symmetry when the top is heavy. 

Notice that neither the mass splitting nor the U(1) contribution decouples 
when the quark is heavy. In both cases, the heavy degrees of freedom con- 
tribute finite effects in the low energy theory. This is because the mass term 
of a heavy quark in the standard model implies a large Yukawa coupling, and 
thus the quark does not truly decouple as its mass goes to infinity. 

It is of interest to interpret the formula for Ar in an effective field theory 
approach. One can then more readily distinguish the different sources of cus- 
todial SU(2) violation, and moreover, one can more easily calculate any large 
logarithmic corrections. We will derive the formula for AT from an effective 
field theory. The formalism we develop can also be applied to other quan- 
tities which will be precisely measured. We will then show why technicolor 
model contributions can be logarithmically enhanced, while contributions for 
the fundamental Higgs theory only have important logarithmic contributions 
from the scaling of aem and in log(MEigg,/Mz). These results are similar to 
those in Refs. (12,4]. The effective field theory is particularly useful for cal- 
culating such logarithmically enhanced contributions. Of course; when high 
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level of precision is reached, one would want to include the full expression 
with additional terms which we neglect (see ref. [13] for example). We first 
present the derivation of the effective field theory lagrangian at the scale Mz 
along the lines outlined by Jenkins and Manohar [14]. We then derive the 
formula for Ar. 

Assume we start with a Lagrangian appropriate for physics at a scale A, 
above the W and 2 masses. The lagrangian includes the fields CV, 2 and y: 

L = -( 1 + AZ&) + ~zw)av”a,w” 

-;( 1 + AZ&) + 6Z,)PZYc9,Z, 

-;( 1 + AZ&) + 6Z,)PA”Ql, 

-(A&Z(P) + JZ,z)~“A&,Z, 

+(M:, + AM&(p) + 6M&)W* 

+;(M; + AM;(p) + SM;)Z* + . . , 

where the ellipsis represents the three- and four-point couplings of the gauge 
bosons, the gauge fixing terms, terms involving the matter fields, and non- 
renorma.lizable terms of higher order in pz, which we will ignore. The factors 
multiplying the kinetic energy terms are wave function renormalizations of 
the gauge boson fields. The infinite counterterms, 62, are chosen so that 
they absorb the 2/e - y + log(4rr) terms of the loop integrals in dimensional 
regularization. (That is, we work in the MS prescription.) The coefficients 
AZ and AM’ are one loop radiative corrections proportional to the coupling 
constants g2 and g’s. AZ(A) and AM(A) are finite and are in principle 
determined by matching to the high energy theory. If A is larger than the 
mass of all particles transforming under the electroweak interactions, we can 
choose our parameters such that they vanish (i.e. if AT(A) = 0). Xt any 
lower scale, they are determined by matching at heavy particle thresholds 
and the renormalization group equations. 

This approach is somewhat unconventional; normally one chooses to keep 
the fieids properly normalized, instead shifting the effects of the factors AZ 
above to the couplings. Our approach proves to be convenient when consid- 
ering only “oblique” corrections to the gauge boson propagators. 

In the standard model: the gauge invariance implies there are only two 
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independent infinite counterterms: one common 6Zwi for the three W’ fields, 
and one SZn for the hypercharge. The four gauge field wave function coun- 
terterms therefore satisfy: 

6Zw = 6Zwi 

6Zz = 26Zwi + 2SZB 

az = E(6Z,i - 6ZB) 

sz, = s2zwi + 2ZB (2.9) 

In any model without a custodial symmetry violating mass counterterm, 
there is one further relationship: 

LM& = ?6M; , (2.10) 

and also M& = CAMS. These relationships are not required for the derivation 
of Ar, but we will use them below. 

Here we have defined the parameters S* = g2/(g2 +g”), S’ = 1 -i?. These 
quantities are not running couplings, but parameters of the theory which will 
be determined by the physical renormalization conditions below. 

The physical Z mass is now given by 

&hy. = 
Mj + Ahf;(hfw) 

I+ AZz(Mw) ’ 
(2.11) 

and similarly for M$,. 
At the W scale (which we identify with the Z scale since log(Mw/Mz) 

is small), we integrate out the heavy gauge bosons, calculating the one-loop 
corrections to the electroweak parameters of the low energy theory. Large 
logarithms have been incorporated in the parameters Abii and AZ; there will 
also be finite matching conditions in general as well. Below the W mass, we 
match to an effective theory involving just the photon and the four fermion 
operator responsible for muon decay. We want a~&) in this theory be the 
running coupling of the properly normalized photon. We therefore choose 

4TcqM(AfW) = gzsz 
1 + AZ,(M,,) 

(2.12) 
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The Fermi constant renormaiized at the scale p = MW is the square of 
the coupling g divided by 8 times the W propagator at zero momentum. 
That is, 

GdMw) = 
a 

g2 

fi 8(M:, + &v(Mw)) = 8M&,,,,(l t AZw(Mw)) 
(2.13) 

In the low-energy theory, the four-fermion operator does not run with p, so 
GF(Mw) = GF(O) = (1.16637 z!z 0.00002) 10-s GeV. This expression may 
be solved for 3: 

32 =1 
2 

i 

1 + +%XMw) _ 1 + 2AWidfifw) 

Wphya ( M&y, - 

&‘&EM(Mw)(~ + AZ,(Mw)) 
112 

GF( Wp,,y. (l+ AZz(Mw)) - AMi( 1 I 
, (2.14) 

where here and below, we drop terms of order g4 or higher. Taken together, 
equations 2.11, 2.12, and 2.14 allow us to iix the parameters in the lagrangian 
in terms of known quantities, once AZ and AM” have been calculated. 

One can now compare the expression for GF above to that of Sirlin to 
derive the formula for Ar. The definition of AT is 

GF 4rQEM(77b) 
3 = 8M&&,(l - AT) 

(2.15) 

One concludes that 

1 a(Mw) a& 1 + AZ,(Mw) 
-~ = a(m.) sz 1 t AZw(M,v) 1 - AT 

The two definitions of the weak mixing angle are related by 

(2.16) 

2 
%I 

AM& AM; 
z E2(1 + - - 

M& 
--Zw+Zz) 

Mi 
So, in sum, 

1tAr = 4Mw) 
44 

I- AZw(Mw) + AZ,(Mw) 

A M,z, ( Afw ) 
‘%Jphys 

(2.17) 

(2.18) 
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Expanding the terms in 2.3, we will arrive at this expression. 
Of course, as a byproduct of deriving the theory at the scale Mw, we 

have directly solved for the three parameters of the theory, g, g’ and Mz, 
in terms of a, GF, and Mzphy.. We can now compute the remaining ones, 
including the one-loop correction terms. One could thereby use our results 
of the following sections to derive deviations in the standard model for the 
W mass directly and for other quantities of interest such as the forward 
backward asymmetry for leptons or b’s simply by computing the results at 
the scale ilfw and comparing to the standard prediction. One would thereby 
account for both direct effects and those due to the fact that the parameters 
extracted from the physical quantities are different from their standard model 
counterparts. The net deviation would be constrained to be less than the 
difference between experimental results and the standard model prediction. 

14s an illustration of the simplicity of this formulation, one can derive 
the difference, A, between the value of sin* 6~ which would be extracted 
from a measurement of the forward-backward asymmetry and that obtained 
from the gauge boson masses [13]. A ccounting for both the 7 - 2 mixing 
contribution and the difference in our value of s from the Sirlin convention 
(see eq. 2.17) one finds 

c, AM;(Mw) 
A = Z,z(%-s, 

( 

AM&(M,) 
- izlz 

wi$hys 
+AZw(hf~)-AZz(Mw) 

Z&y. 1 
(2.19) 

For the remainder of this paper, we will restrict our discussion to AP. 
Before presenting our results, we discuss how one can simpiy extract the 
largest contributions. We will see that for the standard model, the most 
important logarithmically enhanced contribution will arise from the scaling 

of Q,,, but that for technicolor models, one gets large logarithms of the form 
log( 11/m). 

IVe will retain terms in C only up to order p* and work to leading order 
in a.,. We calculate the corrections to AZ and AM2 by scaling between 
physical thresholds and matching at the heavy particle mass scales. Bowever, 
we will neglect finite matching corrections, retaining only the logarithmically 
enhanced scaling contribution. In dimensional reguiarization, the anomalous 
dimension can be extracted from the pole from the loop of particles. This 
contribution will scale AZ(p) and AM(p) to the scale of the particle mass 
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or p, whichever is larger. However, because we are only working to leading 
order in a, the log we thereby obtain is equivalent to the log which would 
appear were we simply to evaluate the loop at the particle mass, applying 
the MS prescription. Therefore we can write 

AZ&- A&(A) = xC'GG(O;h)- C“=(O;F) 

AMQL) - AM*(A) = g -P(O; *) + P(0; p) , (2.20) 
m 

where CGG(pZ;~) is the propagator correction defined above, regulated at 
the scale p. The sum in the above expression represents the loops involving 
particles of mass m, and p = p if p > m and p = m otherwise. 

For simplicity, first consider the case where the corrections to the self 
energy arise only from degenerate custodial SU(2) multiplets. In this case, 
we are interested only in the logarithmically enhanced U(1) corrections. From 
equations 2.9, we derive the relation 

6Zw - 62, - 2/2(6Zw - 6Zz) = 0 (2.21) 

Because of the relation between the logarithmic p dependence and the infinite 
counterterms, we can therefore conclude that all log(p) dependence cancels 
from the sum of the AZ terms appearing in the expression for 1 + AT when 
we work to leading order in a., and neglect log(Mz/Mtv). 

Therefore, if only heavy degenerate SU( 2) representations run in the loops 
determining the gauge boson self energies, there will be no large logarithms 
in the expression for AT. However, there could be light particles in the theory 
(that is, with mass smaller than that of the W). In this case, there can be 
large logarithms, but only coming from the factor (~(Alw)/~~(rn.)). Such 
light particles contribute to the running of cr between these two scales. This 
is the only logarithmically enhanced effect surviving in Ar. 

If we now allow the particles of an SU(2) multiplet to be nondegenerate, 
there can be additional custodial SU(2) violation in the term (AMi/Mi - 
AM&/M&). These effects must also be included. There will also be addi- 
tional logarithmic dependence on the ratio of heavy and light masses. How- 
ever, such terms will in general be smaller than the mass splitting effects. 

This agrees with previous estimates of large standard model effects, (see 
refs. [i,14j, for example) where it is found that the largest U(1) effect is 
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simply from scaling the electromagnetic coupling e between zero momentum 
and the W mass. This greatly simplifies the calculation of AT in the standard 
model, if one is only interested in the largest contributions. 

We now compare this result to the one we obtain in technicalor theories. 
In this case, we will show in the next section that there is an independent wave 
function renormalization constant so that the above relations between the 
renormalization of the gauge boson fields no longer apply. This counterterm 
induces an extra term in the lagrangian of the form 

Z,T a~w”a,w” + &PZVa,Z” 
c i 

(2.22) 

The relation for Zz from Eq. 2.9 therefore becomes 

szz = 26Z,. + 36ZB + $EZx 

while that for Zw becomes 

szw = sz&y. + 6Zx (2.24) 

where 62~ absorbs the remaining infinity in Zw and Zz encountered in 
technicolor theories. 

Now the relation 2.21 is destroyed, so there can indeed be a logarithm 
remaining in the expression for Ar, even when only particles heavier than the 
W run in the loop. In technicolor theories, we expect this logarithm to be cut 
off at a scale 11, of order of the technicolor condensate scaie. Corrections to 
Ar from light pseudogoldstone bosom in technicolor theories will therefore 
be enhanced by the factor log(A$/m’). 

In fact, in the standard model such a logarithm also occurs. There will be 
similar contribution to AT when there is a heavy field which contributes to the 
/3 function of an operator which reduces to 2.22 when the Higgs has a nonzero 
VEV. From dimensional considerations, it is easy to see that fermion loops 
for example do not give a divergent contribution to the fl function of such 
an operator. However, the unphysical Goldstone boson states responsible for 
the masses of the heavy gauge bosons[l2] d o contribute. These states act 
like the pseudogoldstone bosons of technicolor, and contribute to the scaling 
of nonrenormalizable operators which reduce to 2.22 when the Higgs takes 
its vacuum expectation value. In the standard model. the logarithm is cut 
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off by the Higgs mass. For a single standard model Higgs field however, even 
with the log(mn/mz) enhancement factor, the contribution to AT is fairly 
small. 

Of course, the presence of this additional counterterm means that AT is in 
fact a new parameter of the technicolor theory with an arbitrary value at the 
cutoff scale. However, one expects the logarithmically enhanced contribution 
to dominate over that determined with a chiral coefficient determined by 
naive dimensional analysis (151. 

In our calculations, we will simply assume the pseudogoldstone bosom 
are heavier than the 1V and Z gauge bosons. Also, since we work to lowest 
order in crcm, we can extract the relevant logarithms simply by evaluating C 
at the relevant momentum scales (without explicitly scaling). We retain the 
logarithms and discard the additional finite corrections and poles. This is 
the simple procedure which we apply in the next section. 

3 Low Energy Effective Theory 

In this section, we consider the leading contributions to AT, or equivalently, 
C(kz) in technicolor models. To do so, we first construct the low energy 
chiral Lagrangian[lG] for a general technicolor model. 

To simplify the analysis, we will not consider the full set of technicalor 
theories, but only those theories whose global symmetry group is of the form 
Gn x Ga x U(l)“. The two copies of the group G are the transformations 
on the left- and right-handed techniquark fields, and the U(1) is an overall 
phase for all the techniquarks. The formation of the condensate breaks the 
global symmetry down to the vectorial part, Gv x U(l)v. We assume that 
the condensate (QoQo) is proportional to the identity. 

We now need to specify the embedding of the gauged SU(2)w. We will 
focus our analysis on theories which preserve custodial SU(2), aside from 
the symmetry breaking present in the standard model. A simple class of 
such theories can be constructed by only allowing left handed technifermions 
to transform under the gauged SU(2) symmetry. Then generator of the 
custodial SU(2)c symmetry is then the direct sum of the generator of SU(Z),,, 
and the corresponding global symmetry generator embedded in Gn, under 
which right handed fermions transform like their left handed counterparts. 
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We restrict our attention to this class of theories. 
We denote the generators of SU(2)w by r’. They satisfy 

[ri,Tj] = i#+- (3.1) 

The action of the hypercharge on the left-handed techniquarks is generated 
by some other element y of the algebra of Gr x U(l)v (though y may be zero). 
We know that the condensate does not break electric charge; therefore, we can 
deduce that the action of the hypercharge on the right-handed techniquarks 
is y + 72. 

To construct the chiral Lagrangian, the technipions XT are exponentiated 
in a field C 

C=exp(2i;‘Th’T) , (3.2) 

where T’ are the generators of the group G, and h is the order parameter 
parameter associated with the condensate. This field transforms linearly 
under GL x Gn, 

C -+ LCR’ , (3.3) 

and it is a singlet under (I(l)v. Because the electraweak generators are 
embedded in GL and Gn, the gauge covariant derivative of C is given by 

PC = aYz - i(gW’ T + g’BMy)C 

+ iC(g’B’(y + $)) (3.4) 

The chiral Lagrangian is an expansion in powers of derivatives. In the 
absence of ETC interactions, the term with the fewest derivatives is the 
kinetic energy 

LIKE = : tr (D’B)+(D,X) (3.5) 

The coefficient of this term is dictated by the normalization of the technipion 
kinetic energy, which is obtained by expanding out the exponential and using 
the normalization condition of the generators 

tr T’TJ = i@j (3.6) 

There are no other terms with two derivatives 
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In addition to the technipion propagators, 13~~ also includes gauge cou- 
plings. If we set KT = 0, then C = I, and the W and 2 will get a mass: 

M& = g$ tr ((T’)‘) 

M; = (g2 +g’2); tr ((2)“) , 

(3.7) 

(34 

which fixes h in terms of known quantities. 
From this equation, we can determine how the scale, h, scales with the 

number of flavors which condense through the technicolor gauge symmetry. 
For example, if all left-handed fermions were in doublets, while their right- 
handed counterparts were singlets, we would find h = v/fi, where v zz 

25OGeV is the SU(2)w breaking scale, and Nf is the number of doublets. 
From equation 3.5 we may also determine the “swallowed” technipions, 

8, which become the longitudinal components of the gauge bosons: 

qv cc 7rF tr (T’T”) . (3.9) 

This kinetic energy term determined the gauge couplings of the Goldstone 
bosom which will be required in order to calculate radiative corrections. Had 
the theory contained a field with the properties of the standard model Higgs, 
the couplings would be determined by this kinetic energy times ((H f u)/v)‘, 
where H is the Higgs field and v is the VEV. We assume there is no such 
field in our theory. 

In the foregoing we have assumed that there is only one type of techni- 
fermion which condenses to break the chiral symmetry. In two-scale models[l7], 
for example, we would have to allow for more than one parameter, h. 

In general, the technipions are not necessarily exact Goldstone bosons. In 
fact, from recent LEP data (la], we know the charged Goldstone bosons will 
be heavier than 35 GeV. Photon radiative corrections are expected to give 
a smaller mass [2],, so we will assume the existence of additional mass terms 
in our theory, and treat radiative corrections as higher order custodial SU( 2) 
violating effects. We will however assume that the leading order mass term 
preserves SU(2)c. Therefore, the technipions in a given SU(2)c multiplet will 
be degenerate at leading order with a mass, m. 

Having constructed the leading order terms in derivatives and symmetry 
breaking, we now consider higher order terms. From Eq. 2.3, one sees that 
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both corrections to the kinetic energy and mass terms for the VV and 2 gauge 
bosons will give a cbntribution to AT. Because the U(1) coupling violates 
the custodial symmetry, the nonrenormalizable theory below the electraweak 
scale requires counterterms which will also contribute to AT. One example 
of such a term is 

ch.o. = ;& tr (([D”, ~“]~)+([~P, D”]c)) I (3.10) 

where p is an undetermined coefficient which we expect to be of order unity. 
This is one of many possible four derivative terms. 

4 Technipion Radiative Corrections 

Having constructed the ieading order chiral lagrangian, we are now prepared 
to calculate the corrections to AT in the low energy theory. We expect the 
dominant contribution to come from technipion loops, since their contribu- 
tion is enhanced by a potentially large logarithm of the form log(Ai/mz), 
where m is the mass of the technipion multiplet and AX is the symmetry 
breaking scale, which, from general considerations[l5], we expect to be about 
47rh. Contributions from more massive states not appearing in the low energy 
theory can be absorbed in counterterms of the form in equation 3.10. 

In fact these counterterms are required since the contribution from pseu- 
dogoldstone boson loops alone would be divergent. 

We calculate corrections of the so-called “oblique!’ type, ie. to the I-V, 2, 
or y propagators, but not their vertices with fermions. The technipion loops 
correcting the gauge boson propagators are shown in figure I. 

The particles which run in the diagrams of figure 1 are the technipion 
mass eigenstates described above. We consider the contribution from a single 
degenerate representation of SU(2)w. If we denote these states by Y’, they 
satisfy 

[2,x.] = ST 

[T+PrJ] = Je(e + 1) - s(3 + 1)&f’) , (4.1) 

where e is the isospin of the multiplet. 
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We may now use the gauge couplings of the term in equation 3.5 and 
the relationships of equation 4.1 to compute the diagrams of figure 1. The 
integrals are regulated using a dimensional regulator with a scale parameter 
p in 4 - E dimensions. First define 

c-f7 = $ $(3+Y,)r [ 1 czz zz 1 g+ [ $ -43 + Ym) + $Y& + Ym) w 1 
czz = ~[$(-~ym+;(~-~)3)‘] 2 

cww = &$ &+I)-a(a+l) u) [ -.! 1 
d(z) = i - & - $(4z - 1)3/atan-‘((4z - l)-‘I’) 

D(m2) = +-log ma ) 
i ) 4ap’ (4.2) 

where e is the electronic charge, Y,, is the common hypercharge of the mul- 
tiplet, and 7~ is Euler’s constant. We then find 

pZD(m2) fdd 

tc,ZZ( -27d( D(d) + l))F (4.3) 

In writing the answer in this form, we have used the tree level relations 
g = e/s, and g’ = e/c,. Here F = l/2 when the multiplet of technipions is 
self conjugate, and F = 1 otherwise. For example, the ordinary pion triplet 

CT +,T”,K) is self conjugate, but the kaon doublet (K+,K”) is not. The 
function d(z) is never very important; for all values of m bigger than about 

15 



35 GeV its contribution to AT is less than about 10%. In what follows, we 
will ignore d(z). 

Now 

[I 1 $32 =; $1((.+1)-3(3+1) =e(t+1,J2t+1) 1 (4.4) 

Substituting into the standard relation for AT, we find 

AT = a’(! + ‘)t21 + l) 
4Tr 183; D(m’)F > 

where a = e2/4x. 
As explained in the previous section, the infinite result arises when we 

neglect the contribution from the additional four derivative term of the form 
3.10. Such terms also contribute to AT through their contribution to CfGG(0). 
They contain a part with no technipions and only two gauge bosons: 

&(g'awva,w,r t (g2 + g")$3~z-a,z") , 

and this term therefore contributes to Yww(0) and Yzz(0). The contribu- 
tion to Ar is 

ap qe + 1)(2! t 1) -- 
2na; 6 (4.7) 

for each multiplet. When we choose p appropriately, AT is finite. 
In fact, one can check that this single additional counterterm is adequate 

to render the theory finite. This is because of the remaining relation between 
the divergences in CyT, ET’, X2’, and Cww. 

To the extent to which the logarithmically enhanced terms dominate. we 
can derive the radiative corrections to Ar which are 

Ar pi: fr(lr + 1)W t 1) Flog 
1882, 

where we are including the physical Goldstone boson representations I of 
custodial SU(2) (unphysical Goldstone boson contributions were considered 
for example in reference [12]). The l/ 3: dependence is expected for the 
custodial SU(2) violating effects from U(1) (and not mass splitting). 
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In a model with oniy doublets of fermions, this contribution grows as 
Nj - 1. For Ax 5 4rrv, m z Mz, the logarithm would lead to a factor of 

7 enhancement. However, as we saw above, h = u/fi, so with a larger 
number of fermions, the logarithm is reduced. 

5 Vector Technimesons 

Having considered the low energy contributions to the parameter Ar, we now 
show that the remaining contributions from heavier resonances will probably 
not be large, so their contribution can probably be adequately represented 
by the four derivative counterterms discussed in the previous section with a 
coefficient determined by naive dimensional analysis. 

The technimesons which are expected to be next lowest in mass above 
the technipions are the vectors, the analogues of the ~(770) and ~(783). 
These particles too will contribute corrections to the low energy electroweak 
parameters. In addition to radiative corrections to AT, there is a tree level 
contribution. However, this contribution is probably not large, as can be 
deduced from the following estimate, based on vector meson dominance and 
naive dimensional analysis[I5]. 

The diagram of figure 2 is shows a “vector dominance” correction to 
the propagator of the gauge bosons. This type of process is well described. 
by pointlike vertices for the intermediate particle because the momentum 
through the diagram is only of order Mw. Each of the gauge boson-vector 
meson vertices introduce a factor of p'/f, where pz is the gauge boson mass 
squared and f, the analog off,, is approximately 45~. Computing the diagram 
introduces a propagator suppression of order mz, so the net contribution is 
approximated by 

If we substitute m P z 4rrv, we see this contribution is suppressed by (a/4rr)*, 
which is smaller than one loop radiative contributions. 

One loop corrections will probably not be very large either. For technirho 
mass large compared to the cutoff, we expect the contribution to Ar to 
decouple; for masses near Ax, the logarithm log((Ac t W)/W) is not large. 
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6 Fermionic Techniparticles 

Because so little is known about how to construct technicolor models, it 
is possible that there are viable models in which there are relatively light 
resonances other than the technipions and tech&has. In this section we 
consider the effects of a loop of spin-l/2 resonances. The discussion is similar 
to that of the second section. The formulation of the chiral lagrangian is the 
same as that for baryons, given for example in reference 1151. 

In order to construct a chiral Lagrangian for these particles, we must first 
define their transformation properties. To do this, we define the field (, such 
that 

g=c . (6.1) 

The field ( transforms as 

f + L(i? = U(R’ , (6.2) 

where U, L, and R are elements of G. This equation implicitly defines U as 
a function of L, R, and t,he technipion fields. We now take the fermions to 
transform as 

f-+Uf , (6.3) 

but an equivalent theory may be constructed using any other transformation 
law[16]. 

We may construct a covariant derivative of f: 

D’f = Pf -iv’f , 

where 

v“ = ;(f’a’f + fapft - $(gW”. T t g’B’y)f - ifg’B“(? + y)(‘) (6.5) 

This covariant derivative obeys 

D’(Uf) = U(D’f) (6.6) 

The chiral lagrangian for these fermions begins with terms of zero or one 
derivative 

Lf = f(i P + CA 475 + mf)f (6.7) 
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Here P is a field made out of technipions and gauge bosons 

Afi = &‘Pf -@‘I’ - if’(gW .r t g’B*y)f t i[g’Bq? t y)f’) (6.8) 

The field A“ transforms linearly under the action of the group: A’ + UApUt. 
The vectorial couplings of the fermions are Fixed by the normalization 

of the kinetic energy, but the unknown axial coupling is determined by the 
strong dynamics and is an additional parameter of the theory. Of course, 
since the photon field does not appear in A”, its coupling is purely vectorial 
and therefore determined. 

The m, term generates the mass of the fermion, and in most models it 
will be at or above the scale A,. On the other hand, one might imagine that 
the dynamics of the model creates fermions of small enough mass that the 
chiral lagrangian can be used to compute the technifermion loops. As before, 
the ETC operators will split the masses of the fermions, yielding degenerate 
custodial symmetry multiplets. 

Calculating the fermion loop in dimensional regularization we find 

p(pZ) = EL&2D(m;) 

> (6.9) 
where gv and gA are the vector and axial couplings respectively of gauge 
boson G. This yields the correction to AT from the fermions: 

a 2qe t 1)(2[ t 1) 
AT x G 

9s; 
(ci + (1 - c:)D(m;)) . (6.10) 

Here the correction is infinite again, at least in the case where cA # 1, so 
once again the counterterm above will have to be adjusted to cancel this 
divergence. In the standard model, the couplings of a heavy degenerate 
doublet of fermions are like those generated with CA = 1. As stated above, 
such fermions contribute a finite correction to AT. 

7 Conclusion 

At present, the measured values of the W and Z masses are not accurate 
enough for the corrections above to constrain technicolor models with a rea- 
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sonable number of technifermions. It is possible, however, that in the not too 
distant future the W mass may be measured to 45 MeV, the Z mass to 20 
MeV[lS], and the top to better than 10 GeV[20]. If, for example, we assume 
that the values are MZ = 91.000 f .020 GeV, and Mw = 80.000 f .045 GeV, 
then the measured value of AT is (4.4 zt 0.40) x IO-“. 

The largest uncertainty in the standard model prediction of AT will come 
from the lack of precision in the top quark mass measurement. If the mass 
of the top is measured to be 150 f 10 GeV, then AT,.,, Y -2.2 f 0.3 x lo-‘. 
The standard model prediction of course depends on the value of the Higgs 
boson mass, but since technicolor models generally lack light resonances with 
the properties of the Higgs boson, we would expect that these models should 
agree with the standard model prediction with MH above 1 TeV. (A light 
Higgs boson generates rather substantial corrections to AP.) If the W mass 
agrees with this scenario, then there wilI be little room available for complex 
technicolor models. We conclude the uncertainty in the measured minus the 
predicted value of AT will be x 5 x 10e3. Models which generate corrections 
appreciably larger than this will be ruled out. 

Consider, for example, the one-family model [21], in which the techni- 
fermions have the charges under W(3) x SU(2)w x U(1) of an ordinary 
family of quarks and leptons. In this model, the global flavor symmetry 
group G is SU(8), and, since there are four doublets, h = v/2. For this 
model equation 4.8 gives a correction of x 3.6 x IO-‘, corresponding to a 
shift in i%fw of about 560 MeV. This value is clearly sufficiently large to be 
tested in future experiments. Moreover, it has the opposite sign as the top 
quark (or other splitting) contribution, so it can be distinguished. The oppo- 
site sign applies in models with degenerate fermions as well. Moreover, the 
effects described in equation 4.8 grow roughly quadratically with the number 
of generations. On the other hand, this value is somewhat uncertain because 
of the lack of knowledge of the technipion masses, and of the ambiguity in 
the scale A,. If technipion masses are significantly enhanced relative to the 
values we’ve chosen, then other contributions could be comparible to the one 
we’ve calculated. 

An interesting case is also presented by the two-scale models[l7]. In these 
models, there are two types of techniquarks, which transform under different 
representations of the technicolor group (TC). For example, one may imagine 

a model in which there a techniquarks p which transform as a fundamental 

20 



of SU(N)rc, and techniquarks Q which transform as adjoints. In this model, 
there will not only be the corrections from the technipions, but there may 
also be light fermionic resonances of the form q(IQ. These may generate 
additional corrections of the type discussed in section 5. 

In this paper we have restricted ourselves to the correction of the mass of 
the W. There are other experiments, such as the forward-backward asym- 
metry of e+e- scattering at the Z pole, which could also be sensitive to the 
presence of technicolor. These effects could depend on a different combi- 
nation of standard model and non standard model one-loop contributions, 
which could in principle enable one to distinguish between the two. 

In realistic technicolor models, the shift in the W mass we have considered 
in this paper from degenerate custodial W(2) violations is not necessarily the 
leading effect. There can be model dependent corrections due to additional 
sources of custodial SU(2) violation, which will generally occur with the 
opposite sign. So we can only view our result as indicative of the fact that 
without fine tuned cancellations, one would expect technicolor models yield 
measurable corrections to electroweak parameters, in particular, Ar. These 
effects should be useful in restricting and constraining technicolor models. 

If deviations from the standard model prediction of AT are observed, they 
might be the first indication of an underlying technicolor theory or some 
other physics associated with electroweak symmetry breaking. In general, by 
calculating the parameters of the effective field theory presented in Section 2,’ 
one should be able to readily compute corrections to electroweak parameters 
from nonstandard models. 
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9 Figure Captions 

Figure la, Figure lb Technipion loops contributing to Ccc. 
Figure 2 - A “vector dominance” contribution to Ccc. 
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